Answer :
Answer:
a) t=0.9935s
b) d = 6.95m
c) Hmax=2.1m
d) Vf = (9.009,-6.48) m/s
Explanation:
First of all, the we calculate the components of the initial velocity:
[tex]V_{ox}=Vo*cos(21)=9.009m/s[/tex]
[tex]V_{oy}=Vo*sin(21)=3.46m/s[/tex]
For the time of the jump:
[tex]Y_{f}=Y_{o}+V_{oy}*t-\frac{g*t^{2}}{2}[/tex] Solving the quadratic equation for t, we get:
t = 0.9935s
For the distance of her impact, we will need the time we just calculated:
[tex]D=X_{o}+V_{ox}*t=6.95m[/tex]
To know the maximum height:
[tex]V_{fy}=V_{oy}-g*t_{Hmax}[/tex]
[tex]t_{Hmax}=\frac{V_{oy}}{g} =0.346s[/tex] Using this value, we calculate the maximum height:
[tex]Hmax=Y_{o}+V_{oy}*t_{Hmax}-\frac{g*t_{Hmax}^{2}}{2}=2.1m[/tex]
Finally, for the final velocity, we use the time of the jump t=0.9935s:
[tex]V_{fx}=V_{ox}=9.009m/s[/tex]
[tex]V_{fy}=V_{oy}-g*t=-6.48m/s[/tex]