Answer :
Answer:
[tex]v_o = 2761 m/s[/tex]
Explanation:
Since there is no external Force or Torque on the system of bullet and rod
So we can say that total angular momentum of the system will remain conserved about its center
So we will have
[tex]mv_o\frac{L}{2}sin\theta = (I_{rod} + I_{bullet})\omega[/tex]
here we know that
[tex]I_{rod} = \frac{mL^2}{12}[/tex]
[tex]I_{rod} = \frac{4.10\times 0.70^2}{12} [/tex]
[tex]I_{rod} = 0.167 kg m^2[/tex]
[tex]I_{bullet} = mr^2[/tex]
[tex]I_{bullet} = (0.003)(0.35^2)[/tex]
[tex]I_{bullet} = 3.675 \times 10^{-4} kg m^2[/tex]
[tex]\omega = 15 rad/s[/tex]
[tex]\theta = 60 [/tex]
now we have
[tex]0.003(v_o)(0.35)sin60 = (0.167 + 3.675 \times 10^{-4})15[/tex]
[tex]v_o = 2761 m/s[/tex]