Answered

2. A package with a heat sink and fan has a thermal resistance to the ambient of 8 °C/W. The thermal resistance from the die to the package is 2 °C/W. If the package is in a chassis that will never exceed 50 °C and the maximum acceptable die temperature is 110 °C, how much power can the chip dissipate?

Answer :

cjmejiab

To solve this problem it is necessary to apply the concepts related to the Power depending on the temperature and the heat transferred.

By definition the power can be expressed as

[tex]P = \frac{\Delta T}{\Delta Q}[/tex]

Where,

[tex]\Delta T = T_m - T_a =[/tex] Change at the temperature, i.e, the maximum acceptable die temperature ([tex]T_m[/tex]) with the allowable temperature in chassis ([tex]T_A[/tex])

[tex]\Delta Q = Q_A-Q_D =[/tex] Change in the thermal resistance to ambient ([tex]Q_A[/tex]) and the Thermal resistance from die to package ([tex]Q_D[/tex])

Our values are given as,

[tex]T_m=110\°C[/tex]

[tex]T_a= 50\°C[/tex]

[tex]Q_A= 8\°C/W[/tex]

[tex]Q_D= 2\°C/W[/tex]

Replacing we have,

[tex]P = \frac{110-50}{8-2}[/tex]

[tex]P = 10W[/tex]

The power that can dissipate the chip is 10W

Other Questions