Answered

A 50.0 mL sample containing Cd2+ and Mn2+ was treated with 58.4 mL of 0.0400 M EDTA . Titration of the excess unreacted EDTA required 15.9 mL of 0.0130 M Ca2+ . The Cd2+ was displaced from EDTA by the addition of an excess of CN− . Titration of the newly freed EDTA required 22.4 mL of 0.0130 M Ca2+ . What are the concentrations of Cd2+ and Mn2+ in the original solution?

Answer :

whitneytr12

Answer:

[Cd²⁺] = 5.82x10⁻³ M

[Mn²⁺] = 0.037M

Explanation:

The titration of EDTA with Cd²⁺, Mn²⁺ and Ca²⁺ are based in the formation of complexes with a relation 1:1, EDTA: metal, so from the titration of the excess unreacted EDTA with Ca²⁺ we can calculate the EDTA moles by:

[tex] \eta_{EDTA}_{e} = \eta_{Ca^{2+}} [/tex]

[tex] \eta_{EDTA}_{e} = 15.9 \cdot 10^{-3} L \cdot 0.0130M = 2.07 \cdot 10^{-4} moles [/tex]  

The moles of EDTA are:

[tex] \eta_{T} = \eta_{e} + \eta_{r} [/tex]      (1)

where [tex]\eta_{T}[/tex]: is the total moles of EDTA, [tex]\eta_{e}[/tex]: is the EDTA excess moles and [tex]\eta_{r}[/tex]: is the EDTA moles that react with Cd²⁺ and Mn²⁺

Hence the EDTA moles that react with Cd²⁺ and Mn²⁺ are equal to the moles of both metals:

[tex] \eta_{r} = \eta_{Cd^{2+}} + \eta_{Mn^{2+}} [/tex]   (2)

From equation (1) we can find the [tex] \eta_{r}[/tex]:

[tex] \eta_{r} = \eta_{T} - \eta_{e} [/tex]  

[tex] \eta_{r} = 58.4 \cdot 10^{-3}L \cdot 0.0400M - 2.07 \cdot 10^{-4} moles = 2.13 \cdot 10^{-3} moles [/tex]  

[tex] \eta_{Cd^{2+}} + \eta_{Mn^{2+}} = 2.13 \cdot 10^{-3} moles [/tex]     (3)

Now, from the titration of the EDTA free of Cd²⁺ with Ca²⁺, we can calculate the moles of EDTA that react with the Cd²⁺ and hence the Cd²⁺ moles:

[tex] \eta_{EDTA} = \eta_{Ca^{2+}} = 22.4 \cdot 10^{-3}L \cdot 0.0130M = 2.91 \cdot 10^{-4} moles [/tex]

[tex] \eta_{Cd^{2+}} = 2.91 \cdot 10^{-4} moles [/tex]

Having the Cd²⁺ moles we can now calculate the Mn²⁺ moles using equation (3):

[tex] \eta_{Mn^{2+}} = 2.13 \cdot 10^{-3} moles -\eta_{Cd^{2+}} [/tex]

[tex] \eta_{Mn^{2+}} = 2.13 \cdot 10^{-3} moles - 2.91 \cdot 10^{-4} moles = 1.84 \cdot 10^{-3} moles [/tex]

Now, with the Cd²⁺ moles and Mn²⁺ moles we can find their concentrations in the original solution:

[tex] [Cd^{2+}] = \frac{2.91 \cdot 10^{-4} moles}{50.0\cdot 10^{-3}L} = 5.82 \cdot 10^{-3} M [/tex]

[tex] [Mn^{2+}] = \frac{1.84 \cdot 10^{-3} moles}{50.0\cdot 10^{-3}L} = 0.037M [/tex]  

I hope it helps you!

Other Questions