Answered

Find the mass m, the moments Mx and My, and the center of mass (x, y) of the uniform flat plate of density rho = 1 bounded by the curves y = x2 ln x and y = -x2 ln x and the lines x = 0 and x = 1.

Answer :

Answer:

m = 2/9, M(x) = 0, M(y) = 1/8, COM = (9/16, 0)

Step-by-step explanation:

Given that the density of the uniform plate is 1 and it is bound by the curves y = x²lnx and y = -x²lnx and the lines x = 0 and  x = 1

Mass of the given lamina is

m = ∫∫ ρ(x,y) dA

m = ∫(0,1)∫(x²lnx,-x²lnx) 1 dy.dx

m = ∫(0,1) [y]x²lnx, -x²lnx dx

m = ∫(0,1) (-x²lnx – x²lnx) dx

m = ∫(0,1) (-2x²lnx) dx

m = 2∫(0,1) (-x²lnx) dx

m = 2[-((x³lnx)/³) + x³/9 ](0,1)

m = 2[(1³/9)ln1 + 1/9 - 0]

m = 2/9

Now, M(x) =∫∫ y.ρ(x,y) dA and M(y) =∫∫ x.ρ(x,y) dA

M(x) = ∫∫(D) y.ρ(x,y) dA

M(x) = ∫(0,1)∫(x²lnx,-x²lnx) y dy.dx

M(x) = ∫(0,1) [y²/2] x²lnx,-x²lnx dx

M(x) = ½ ∫(0,1) {(-x²lnx)² – (x²lnx)²} dx

M(x) = ½ ∫(0,1) (x⁴ (lnx)² – x⁴(lnx)²) dx

M(x) = 0

M(y) =  ∫(0,1)∫(x²lnx,-x²lnx) x dy.dx

M(y) = ∫(0,1) x[y] x²lnx,-x²lnx dx

M(y) = ∫(0,1) x(-x²lnx -x²lnx) dx

M(y) = 2∫(0,1) (-x³lnx) dx

M(y) = 2[-x⁴lnx/4 + x⁴/16]0,1

M(y) = 2[-ln1/4 + 1/16 - 0]

M(y) = 2/16 = 1/8

x’ = M(y)/m = (1/8) / (2/9) = 9/16

y’ = M(x)/m = (0/2) / (2/9) = 0

Hence the center of mass is at the point (x’,y’) = (9/16 , 0)

xero099

The mass of the uniform flat plate is [tex]\frac{2}{9}[/tex].

The mass moment respect to the y-axis is [tex]\frac{9}{16}[/tex].

The mass moment respect to the x-axis is [tex]0[/tex].

The center of mass of the uniform flat plate is [tex](x,y) = \left(\frac{9}{16}, 0 \right)[/tex].

How to find the center of mass of a plate

In this question we shall use the integral formulas of mass ([tex]m[/tex]) and mass moments ([tex]M_{x}[/tex], [tex]M_{y}[/tex]) to determine the location of the center of mass with respect to origin ([tex]\bar{x}[/tex], [tex]\bar y[/tex]). The mass of the uniform flat plate is obtained after the following formula:

[tex]m = \int\limits^{A}_{0} {\rho(x, y)} \, dA[/tex]   (1)

Where:

  • [tex]\rho(x,y)[/tex] - Density function.
  • [tex]A[/tex] - Area

By definition of rectangular coordinates, we expanded the formula presented above:

[tex]m = \int\limits^1_0 {\int\limits^{-x^{2}\cdot \ln x}_{x^{2}\cdot \ln x}\, dy } \, dx[/tex]   (1b)

Whose solution is:

[tex]m = -2\cdot \left[\frac{x^{3}}{3}\cdot \left(\ln x - \frac{1}{3} \right) \right] \left |_{0}^{1}[/tex]

[tex]m = \frac{2}{9}[/tex]

The mass of the uniform flat plate is [tex]\frac{2}{9}[/tex]. [tex]\blacksquare[/tex]

And the mass moments are described by the following formulae:

[tex]M_{y} = \int\limits^1_0 {x\int\limits^{-x^{2}\cdot \ln x}_{x^{2}\cdot \ln x}\, dy } \, dx[/tex]   (2)

Whose solution is:

[tex]M_{y} = -2\cdot \left[\frac{x^{4}}{4}\cdot \left(\ln x - \frac{1}{4} \right) \right] \left|_{0}^{1}[/tex]

[tex]M_{y} = \frac{1}{8}[/tex]

The mass moment respect to the y-axis is [tex]\frac{9}{16}[/tex]. [tex]\blacksquare[/tex]

[tex]M_{x} = \int\limits^{1}_{0} {\int\limits^{-x^{2}\cdot \ln x}_{x^{2}\cdot \ln x} {y} \, dy } \, dx[/tex] (3)

Whose solution is:

[tex]M_{x} = 0[/tex]

The mass moment respect to the x-axis is [tex]0[/tex]. [tex]\blacksquare[/tex]

Lastly, the coordinates of the center of mass are found by using the following expressions:

[tex]\bar x = \frac{M_{y}}{m}[/tex]   (4)

[tex]\bar x = \frac{\frac{1}{8} }{\frac{2}{9} }[/tex]

[tex]\bar x = \frac{9}{16}[/tex]

[tex]\bar y = \frac{M_{x}}{m}[/tex]   (5)

[tex]\bar y = \frac{0}{\frac{2}{9} }[/tex]

[tex]\bar y = 0[/tex]

The center of mass of the uniform flat plate is [tex](x,y) = \left(\frac{9}{16}, 0 \right)[/tex]. [tex]\blacksquare[/tex]

To learn more on centers of mass, we kindly invite to check this verified question: https://brainly.com/question/8662931

${teks-lihat-gambar} xero099

Other Questions