Answered

A system of a linear and quadratic equation is shown below.
6x+y=x^2+9
x+y=5
When solving the system algebraically, what is the solution?

Answer :

calculista

Answer:

The solutions are the points (1,4) and (4,1)

Step-by-step explanation:

we have

[tex]6x+y=x^{2}+9[/tex] ----> equation A

[tex]x+y=5[/tex] ----> [tex]y=-x+5[/tex] ---> equation B

substitute equation B in equation A

[tex]6x+(-x+5)=x^{2}+9[/tex]

solve for x

[tex]6x-x+5=x^{2}+9[/tex]

[tex]5x+5=x^{2}+9[/tex]

[tex]x^{2}+9-5x-5=0[/tex]

[tex]x^{2}-5x+4=0[/tex]

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-5x+4=0[/tex]  

so

[tex]a=1\\b=-5\\c=4[/tex]

substitute in the formula

[tex]x=\frac{-(-5)(+/-)\sqrt{-5^{2}-4(1)(4)}} {2(1)}[/tex]

[tex]x=\frac{5(+/-)\sqrt{9}} {2}[/tex]

[tex]x=\frac{5(+/-)3} {2}[/tex]

[tex]x=\frac{5(+)3} {2}=4[/tex]

[tex]x=\frac{5(-)3} {2}=1[/tex]

The solutions are x=1,x=4

Find the values of y

For x=1 ----->  [tex]y=-(1)+5=4[/tex]  ---->  (1,4)

For x=4 ----->  [tex]y=-(4)+5=1[/tex]  ---->  (4,1)

therefore

The solutions are the points (1,4) and (4,1)

Other Questions