Answer :
Answer:
ΔV = [tex]=v_{p} -v_{c} = 3.337 \frac{km}{s}[/tex]
Explanation:
Distance of earth from sun = [tex]R_{2} = 147.4 \times 106 Km[/tex]
Spacecraft perihelion = [tex]R_{2} = 120\times106Km[/tex]
gravitational parameters are now given as
[tex]\mu_{sun} = 132.7\times 10^{9}[/tex]
[tex]\mu_{earth} = 398600[/tex]
radius of earth = 6378 Km
Heliocentric spacecraft velocity at earth sphere of influence =
[tex]V_{D}^{v} =\sqrt{2\mu_{sun}} \sqrt{\frac{R_{2} }{R_{1}(R_{1} +R_{2} ) } }[/tex]
[tex]V_{D}^{v} =28.43\frac{km}{s}[/tex]
Heliocentric velocity of earth = [tex]v_{earth} = 30.06\frac{km}{sec}[/tex]
[tex]V_{infinity}= v_{earth}-V_{D}^{v} =30.06-28.43=1.57g\frac{km}{s}[/tex]
assume
[tex]r_{p} =r_{earth} +r_{altitude} =6378 + 200 = 6578Km[/tex]
Geometric spacecraft velocity of spacecraft at perigee of departure hyperbola
[tex]v_{p}=\sqrt{v^{2} _{infinity}+\frac{2\mu_{earth} }{r_{p} } } = 11.12\frac{km}{s}[/tex]
geometric space craft velocity in its circular parking orbit
[tex]v_{c}=\sqrt{\frac{\mu_{earth} }{r_{p} } } = 7.784 \frac{km}{s}[/tex]
ΔV = [tex]=v_{p} -v_{c} = 3.337 \frac{km}{s}[/tex]