Answer :
Answer:
[tex]AB=22\ units[/tex]
Step-by-step explanation:
we know that
In this problem ABCD is a rectangle
so
DC=AB
BC=AD
Let
BC ---> the length of rectangle
DC ---> the width of rectangle
we know that
The perimeter of rectangle is equal to
[tex]P=2(BC+DC)[/tex]
we have
[tex]P=66\ units[/tex]
so
[tex]66=2(BC+DC)[/tex]
simplify
[tex]33=BC+DC[/tex] ----> equation A
[tex]DC=2BC[/tex] ----> equation B
substitute equation B in equation A
[tex]33=BC+2BC[/tex]
Solve for BC
Combine like terms
[tex]33=3BC[/tex]
Divide by 3 both sides
[tex]BC=11\ units[/tex]
Find the value of DC
[tex]DC=2BC[/tex] ----> [tex]DC=2(11)=22\ units[/tex]
Remember that
DC=AB
therefore
[tex]AB=22\ units[/tex]