Evaluate the double integral ∬R(2x−y)dA, where R is the region in the first quadrant enclosed by the circle x^2+y^ 2= 4 and the lines x = 0 and y = x, by changing to polar coordinates.

Answer :

Answer:

Step-by-step explanation:

We are to integrate the function

[tex]f(x,y) = 2x-y[/tex]

over the area enclosed by the circle

[tex]x^2+y^2 =4 \\x=0\\y=x[/tex]

Convert into polar coordinates

[tex]dA=rdr dt[/tex]

x=rcost and y = rsint

Since the lines are x=0 and y=x we find that t varies from 0 to pi/4

[tex]2x-y =2rsint-rcost[/tex]

Double integral will become now

[tex]\int\limits^\frac{\pi}{4} _0 \int\limits^2_0 2rcost -rsint dt\\=\int\limits^\frac{\pi}{4} _0 r^2 cost -r^2sint /2 dt\\= r^2 sint - r^2 cost/2[/tex]

(since variables are independent here)

Substitute for r and t

4 sin pi/4 -2 cospi/4

= [tex]\sqrt{2}[/tex]

MrRoyal

The result of evaluating the double integral is [tex]\int\int R(2x-y) dA = \frac{4(4 - 3\sqrt 2)}{3}[/tex]

How to evaluate the double integral?

The given parameters are:

[tex]\int\int R(2x-y) dA[/tex]

x^2 + y^2 = 4

Lines x = 0 and y = x

By polar coordinates, we have:

x = rcost and y = rsint

dA = rdrdt

Substitute x = rcost and y = rsint in 2x - y

2x - y = 2rcost - rsint

So, the integral becomes

[tex]\int\int R(2x-y) dA = \int\limits^a_b \int\limits^a_b ( 2r\cos (t) - r \sin(t) )\ rdrdt[/tex]

The lines x = 0 and y = x imply that the integral varies from 0 to 2 and π/2 to π/4.

So, we have:

[tex]\int\int R(2x-y) dA = \int\limits^{\pi/4}_{\pi/2} \int\limits^2_0 ( 2r\cos (t) - r \sin(t) )\ rdrdt[/tex]

Rewrite as:

[tex]\int\int R(2x-y) dA = \int\limits^{\pi/4}_{\pi/2} \int\limits^2_0 ( 2\cos (t) - \sin(t) )\ r^2drdt[/tex]

Split the integral

[tex]\int\int R(2x-y) dA = \int\limits^{\pi/4}_{\pi/2} ( 2\cos (t) - \sin(t) ) dt \int\limits^2_0 r^2dr[/tex]

Integrate

[tex]\int\int R(2x-y) dA = [2\sin (t) - \cos(t)]\limits^{\pi/4}_{\pi/2} * [\frac{r^3}{3}]\limits^2_0[/tex]

Expand

[tex]\int\int R(2x-y) dA = [2\sin (\pi/2) + \cos(\pi/2) - 2\sin (\pi/4) - \cos(\pi/4)] * [\frac{2^3 - 0^3}{3}][/tex]

Simplify the above expression

[tex]\int\int R(2x-y) dA = [2*1 + 0 - \sqrt 2 - \frac{\sqrt 2}{2}] * [\frac{8}{3}][/tex]

[tex]\int\int R(2x-y) dA = [\frac{4 - 3\sqrt 2}{2}] * [\frac{8}{3}][/tex]

Evaluate the product

[tex]\int\int R(2x-y) dA = \frac{4(4 - 3\sqrt 2)}{3}[/tex]

Hence, the result of evaluating the double integral is [tex]\int\int R(2x-y) dA = \frac{4(4 - 3\sqrt 2)}{3}[/tex]

Read more about double integrals at:

https://brainly.com/question/19053586

Other Questions