Answered

10. A hockey puck with mass 0.3 kg is sliding along ice that can be considered frictionless. The puck’s velocity is 20 m/s when it crosses over onto a floor that has a coefficient of kinetic friction = 0.35. How far will the puck travel across the floor before it stops?

Answer :

Answer:

[tex] d = \frac{v^2_i}{2a}= \frac{(20m/s)^2}{2* 3.43 m/s^2}=58.309m [/tex]

Explanation:

For this case  we can use the second law of Newton given by:

[tex] \sum F = ma[/tex]

The friction force on this case is defined as :

[tex] F_f = \mu_k N = \mu_k mg [/tex]

Where N represent the normal force, [tex]\mu_k [/tex] the kinetic friction coeffient and a the acceleration.

For this case we can assume that the only force is the friction force and we have:

[tex] F_f = ma[/tex]

Replacing the friction force we got:

[tex] \mu_k mg = ma[/tex]

We can cancel the mass and we have:

[tex] a = \mu_k g = 0.35 *9.8 \frac{m}{s^2}= 3.43 \frac{m}{s^2}[/tex]

And now we can use the following kinematic formula in order to find the distance travelled:

[tex] v^2_f = v^2_i - 2ad[/tex]

Assuming the final velocity is 0 we can find the distance like this:

[tex] d = \frac{v^2_i}{2a}= \frac{(20m/s)^2}{2* 3.43 m/s^2}=58.309m [/tex]

Other Questions