Answer :

Option B:

[tex]9^{\frac{1}{8}x}[/tex] is the equivalent expression to the given expression.

Solution:

Given expression:

[tex]$\sqrt[4]{9} ^{\frac{1}{2}x}[/tex]

To find the equivalent expression to the given expression.

[tex]$\sqrt[4]{9} ^{\frac{1}{2}x}[/tex]

Using radical rule: [tex]$\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]

So that [tex]$\sqrt[4]{9} = 9^{\frac{1}{4} }[/tex].

[tex]$\sqrt[4]{9} ^{\frac{1}{2}x}=\left(9^{\frac{1}{4}}\right)^{\frac{1}{2} x}[/tex]

Using exponent rule: [tex]\left(a^{b}\right)^{c}=a^{b c}[/tex]

         [tex]=9^{\frac{1}{4} \cdot \frac{1}{2} x}[/tex]

         [tex]=9^{\frac{1}{8}x}[/tex]

[tex]$\sqrt[4]{9} ^{\frac{1}{2}x}=9^{\frac{1}{8}x}[/tex]

Hence [tex]9^{\frac{1}{8}x}[/tex] is the equivalent expression to the given expression.

Option B is the correct answer.

Other Questions