Answer :
Step-by-step explanation:
[tex]length \: of \: segment \\ = \sqrt{ {(9 - 4)}^{2} + {(3 - 2)}^{2} } \\ = \sqrt{ {5}^{2} + {1}^{2} } \\ = \sqrt{25 + 1} \\ = \sqrt{26} \\ = 5.09901951 \\ = 5.09 \: units[/tex]
Answer:
The answer to your question is d = [tex]\sqrt{26}[/tex]
Step-by-step explanation:
Data
P₁ = (4, 2)
P₂ = (9, 3)
Formula
distance between two points = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}}[/tex]
x₁ = 4 y₁ = 2
x₂ = 9 y₂ = 3
-Substitution
d = [tex]\sqrt{(9 - 4)^{2} + (3 + 2)^{2}}[/tex]
-Simplification
d = [tex]\sqrt{5^{2} + 1^{2}}[/tex]
d = [tex]\sqrt{25 + 1}[/tex]
d = [tex]\sqrt{26}[/tex]
-Result
d = [tex]\sqrt{26}[/tex] units
- Conclusion
The distance between these points is [tex]\sqrt{26}[/tex] units