Answer :

Hrishii

Step-by-step explanation:

[tex]length \: of \: segment \\ = \sqrt{ {(9 - 4)}^{2} + {(3 - 2)}^{2} } \\ = \sqrt{ {5}^{2} + {1}^{2} } \\ = \sqrt{25 + 1} \\ = \sqrt{26} \\ = 5.09901951 \\ = 5.09 \: units[/tex]

Answer:

The answer to your question is d = [tex]\sqrt{26}[/tex]

Step-by-step explanation:

Data

P₁ = (4, 2)

P₂ = (9, 3)

Formula

distance between two points = [tex]\sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}}[/tex]

x₁ = 4          y₁ = 2

x₂ = 9        y₂ = 3

-Substitution

d = [tex]\sqrt{(9 - 4)^{2} + (3 + 2)^{2}}[/tex]

-Simplification

d = [tex]\sqrt{5^{2} + 1^{2}}[/tex]

d = [tex]\sqrt{25 + 1}[/tex]

d = [tex]\sqrt{26}[/tex]

-Result

d = [tex]\sqrt{26}[/tex] units

- Conclusion

The distance between these points is [tex]\sqrt{26}[/tex] units

Other Questions