Answer :
Answer:
a) 8.27 ×10^4m/s = Orbital speed
b) The period,T = 1.25×10^6 seconds
Explanation:
b) The orbital period T is given by :
T =( 2pi × r ^(3/2))/(SqrtGM)
Where G = gravitational constant = 6.67×10^-11
M = mass = 1.99×10^30kg
Substituting into the equation
T =( 2 ×3.142(0.11×1.5×10^11)^3/2) / (Sqrt(6.67×10^-11)×(0.85)×(1.99×10^30)
T = 1.25 ×10^6 seconds
a) The orbital speed can be determined using the equation:
T = (2pi ×r)/v
Rearranging the equation, we get:
v = (2 pi × r)/T
Substituting the values
v = [2 ×3.142)(0.11) × (1.5×10^-11)] / (1.25×10^6)
v = 8.27 × 10^4m/s