Answer :
Answer:
Step-by-step explanation:
a)
Let x unit length of rope
Riemann sum
[tex]W= \lim_{n \to \infty} \sum\limits^n_{i=1}0.3x[/tex]
Weight = 0.3x
work done = 0.3xdx
The required region is 0<x<60
Thus, the required work is
[tex]W=\int\limits^{60}_0 {0.3x} \, dx \\\\=0.3[\frac{x^2}{2}]\imits^{60}_0\\\\=0.15(60)^2\\=(0.15)(3600)\\\\W=540ft-lb[/tex]
b)
Let x unit length of rope from bottom
The Riemann sum in two parts.
First half weight is = 0.3x
The second half weight is = (0.3)(60 - x)
Thus, the Riemann sum is
[tex]W= \lim_{n \to \infty} \sum\limits^n_{i=1}0.3x + \lim_{n \to \infty} \sum\limits^n_{i=1}0.3(60-x)[/tex]
The first weight is 0.3x when 0<x<30.
The second half weight is = 0.3(60-x) when 30<x<60
Thus, the work done is
[tex]0.3xdx + 0.3(60-x)dx[/tex]
Consider,
[tex]W=\int\limits^{30}_0 {0.3x} \, dx +\int\limits^{60}_{30} {(0.3)(60-x)} \, dx\\\\=[0.15x^2]^{30}_0-0.15[60-x^2]^{60}_{30}\\\\=(0.15)(30)^2-(0.15)(60-(60))^2+(0.15)(60-(30))^2 \\\\=135-0+135\\\\W=270ft-lb[/tex]