Answer :
Answer:
Answer = Option A;
sinθ = ±[tex]\frac{\sqrt{33} }{7}[/tex]
tanθ = ±[tex]\frac{\sqrt{33} }{4}[/tex]
Step-by-step explanation:
cosθ = [tex]-\frac{4}{7}[/tex]
Remove the negative sign and evaluate cosθ = 4/7
cosθ = adjacent/hypotenuse.
Please see attached image for the right-angle triangle representation.
Let opp = length of opposite side of the triangle.
Let adj = length of adjacent side of the triangle.
Let hyp = length of hypotenuse side of the triangle
Using Pythagoras theorem,
[tex]hyp^{2}= opp^{2} +adj^{2} ;\\\\7^{2}= opp^{2}+ 4^{2};\\ \\opp^{2} =7^{2}- 4^{2} \\\\opp^{2} = 49-16\\\\opp^{2} = 33;[/tex]
Take the square root of both sides.
[tex]\sqrt{opp^{2} } =[/tex] ±[tex]\sqrt{33}[/tex]
opp = ±[tex]\sqrt{33}[/tex]
sinθ = opposite/hypotenuse
sinθ = ±[tex]\frac{\sqrt{33} }{7}[/tex]
tanθ = opposite/adjacent
tanθ = ±[tex]\frac{\sqrt{33} }{4}[/tex]
