Answer :

SaniShahbaz

Answer:

[tex]\begin{bmatrix}\mathrm{Solution:}\:&\:-6\le \:x<3\quad \mathrm{or}\quad \:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:[-6,\:3)\cup \:[5,\:\infty \:)\end{bmatrix}[/tex]

The number line graph is also attached below.

Step-by-step explanation:

Given the inequality

[tex]\frac{\left(x-5\right)\left(x+6\right)}{\left(x-3\right)}\ge 0[/tex]

[tex]\:\frac{x^2+x-30}{\left(x-3\right)}\ge \:0[/tex]

Let's find the critical points of the inequality.

[tex]\frac{x^2+x-30}{\left(x-3\right)}=0[/tex]

[tex]x^2+x-30=0[/tex]        (Multiply both sides by x-3)

[tex](x-5)(x+6)=0[/tex]    (Factor left side of equation)

[tex]x-5=0[/tex] or [tex]x+6=0[/tex]    (Set factors equal to 0)

[tex]x=5[/tex] or [tex]x=-6[/tex]

Check possible critical points.

x = 5  (Works in original equation)

x = −6  (Works in original equation)

Critical points:

x = 5 or x = −6      (Makes both sides equal)

x = 3          (Makes left denominator equal to 0)

Check intervals in between critical points. (Test values in the intervals to see if they work.)

x ≤ −6     (Doesn't work in original inequality)

−6 ≤ x < 3      (Works in original inequality)

3 < x ≤ 5         (Doesn't work in original inequality)

x ≥ 5 (Works in original inequality)

so

[tex]-6\le \:x<3\quad \mathrm{or}\quad \:x\ge \:5[/tex]

Therefore,

[tex]\begin{bmatrix}\mathrm{Solution:}\:&\:-6\le \:x<3\quad \mathrm{or}\quad \:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:[-6,\:3)\cup \:[5,\:\infty \:)\end{bmatrix}[/tex]

The number line graph is also attached below.

${teks-lihat-gambar} SaniShahbaz

Other Questions