Answer :

Hrishii

Step-by-step explanation:

[tex] \angle AOB[/tex] and [tex] \angle BOC[/tex] are linear pair angles.

[tex] \therefore m\angle AOB + m\angle BOC = 180° \\ \therefore \: 3x + 124 \degree + 6x + 29 \degree = 180° \\ \therefore \: 9x + 153 \degree = 180° \\ \therefore \: 9x = 180° - 153 \degree \\ \therefore \: 9x = 27 \degree \\ \therefore \:x = \frac{27 \degree }{9} \\ \huge \pink{ \boxed{\therefore \:x =3 \degree }} \\ \\ \because \: m\angle BOC =6x + 29 \degree \\ \therefore \: m\angle BOC =6 \times3 \degree + 29 \degree \\ \therefore \: m\angle BOC = 18\degree + 29 \degree \\ \\ \huge \red{ \boxed{\therefore \: m\angle BOC = 47 \degree }}[/tex]

Other Questions