Answer :

calculista

Answer:

[tex]V=\frac{400}{3}\sqrt{3}\ cm^3[/tex]

Step-by-step explanation:

we know that

The given figure is a triangular pyramid

The volume of the triangular pyramid is equal to

[tex]V=\frac{1}{3}Bh[/tex]

where

B is the area of the triangular base

h is the height of the pyramid

Find the area of the base

The base is an equilateral triangle

Applying the law of sines to determine the area

[tex]B=\frac{1}{2}(10^2)sin(60^o)[/tex]

Remember that

[tex]sin(60^o)=\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]B=\frac{1}{2}(10^2)\frac{\sqrt{3}}{2}[/tex]

[tex]B=25\sqrt{3}\ cm^2[/tex]

Find the volume

we have

[tex]h=16\ cm[/tex]

[tex]B=25\sqrt{3}\ cm^2[/tex]

substitute

[tex]V=\frac{1}{3}(25\sqrt{3})(16)[/tex]

[tex]V=\frac{400}{3}\sqrt{3}\ cm^3[/tex]

Other Questions