Answer :
Answer:
[tex]V_{max} = 14.8m/s[/tex]
[tex]V_{min} = 13.9m/s[/tex]
Explanation:
Given that,
[tex]\mu_s = 0.0[/tex]
[tex]U = 120m[/tex]
[tex]\theta = 10^\circ[/tex]
max speed for cycle for safe turning on the corner
[tex]V_{max}=\sqrt{\frac{Ug(\mu_s+ \tan \theta}{1 - \mu_s \tan \theta} }[/tex]
[tex]V_{max} = \sqrt{\frac{120\times 9.8 (0.01\+ \tan 10^0)}{1-0.01 \tan 10^0} } \\\\V_{max} = 14.8m/s[/tex]
min speed for cycle for safe turning on the corner
[tex]V_{min} = \sqrt{\frac{Ug( \tan \theta - \mu_s)}{1+ \mu_s \tan \theta} }[/tex]
[tex]V_{min} = \sqrt{\frac{120 \times 9.8(\tan 10^0 - 0.01)}{1+0.01 \tan 10^0} } \\\\V_{min} = 13.9m/s[/tex]