Express the answer in standard form.

Answer:
[tex]-2x^{2} +8x-10[/tex]
Step-by-step explanation:
Standard form is basically where the degrees of the terms are in descending order.
First, let's distribute the negative sign to the terms in the second parentheses:
[tex]-(3x^{2} -5x+3) = -3x^{2} +5x-3[/tex]
Now, we can just combine like terms with the terms from the first parentheses:
[tex]x^{2} +3x - 7 - 3x^{2} +5x-3 = -2x^{2} +8x-10[/tex]
So, our answer is: [tex]-2x^{2} +8x-10[/tex]
Answer:
Step-by-step explanation:
(x² + 3x - 7) - (3x² - 5x + 3)
Take (-) inside to remove the parenthesis
(x² + 3x - 7) - (3x² - 5x + 3) = x² + 3x - 7 - 3x² + 5x - 3
= x² - 3x² +3x + 5x -7 - 3 {bring the like terms together and do the arithmetic operation}
= -2x² + 8x - 10