Answer :
Answer:
Mass of the object = 5 kg.
Explanation:
Given:
Object 1:
Mass of the given object, [tex]m_1[/tex] = 1 kg
Acceleration of the object, [tex]a_1[/tex] = 5.0 m/s^2
Object 2:
Acceleration of the object, [tex]a_2[/tex] = [tex](\frac{1}{5})^t^h \times a_1[/tex]
[tex]a_2=\frac{1}{5} \times 5[/tex]
[tex]a_2=1 m.s^-^2[/tex]
We have to find the mass of the object 2.
Let the mass be [tex]m_2[/tex] .
Now we will find the force on object 1 using Newton's second law .
⇒ [tex]F_1=m_1(a_1)[/tex]
⇒ [tex]F_1=1(5)[/tex] kg.ms^-2
⇒ [tex]F_1=5[/tex] N
According to the question.
The same force is applied to object 2.
So,
⇒ [tex]F_1=F_2= 5\ N[/tex]
⇒ [tex]F_2=m_2(a_2)[/tex]
⇒ Re-arranging.
⇒ [tex]m_2=\frac{F_1}{a_2}[/tex]
⇒ Plugging the values.
⇒ [tex]m_2=\frac{5\ kg.m.s^-^2}{1\ m.s^-^2}[/tex]
⇒ [tex]m_2= 5[/tex] kg.
The mass of the object where same force is applied is 5 kg.