When a certain force is applied to the 1-kg standard mass its acceleration is 5.0 m/s^2. When the same force is applied to another object its acceleration is one-fifth as much. The mass of the object is:_____

Answer :

Answer:

Mass of the object = 5 kg.

Explanation:

Given:

Object 1:

Mass of the given object, [tex]m_1[/tex] = 1 kg

Acceleration of the object, [tex]a_1[/tex] = 5.0 m/s^2

Object 2:

Acceleration of the object, [tex]a_2[/tex] = [tex](\frac{1}{5})^t^h \times a_1[/tex]

                                            [tex]a_2=\frac{1}{5} \times 5[/tex]

                                            [tex]a_2=1 m.s^-^2[/tex]

We have to find the mass of the object 2.

Let the mass be [tex]m_2[/tex] .

Now we will find the force on object 1 using Newton's second law .

⇒ [tex]F_1=m_1(a_1)[/tex]

⇒ [tex]F_1=1(5)[/tex] kg.ms^-2

⇒ [tex]F_1=5[/tex] N

According to the question.

The same force is applied to object 2.

So,

⇒ [tex]F_1=F_2= 5\ N[/tex]

⇒ [tex]F_2=m_2(a_2)[/tex]

⇒ Re-arranging.

⇒ [tex]m_2=\frac{F_1}{a_2}[/tex]

⇒ Plugging the values.

⇒ [tex]m_2=\frac{5\ kg.m.s^-^2}{1\ m.s^-^2}[/tex]

⇒ [tex]m_2= 5[/tex] kg.

The mass of the object where same force is applied is 5 kg.

Other Questions