Answer :
Answer:
a) [tex]\Delta V \approx 50.265\,in^{3}[/tex], b) [tex]\Delta A_{s} \approx 5.027\,in^{2}[/tex]
Explanation:
a) The volume of the sphere is:
[tex]V = \frac{4}{3}\pi\cdot r^{3}[/tex]
The total differential of the volume of the sphere is:
[tex]\Delta V = 4\pi\cdot r^{2}\,\Delta r[/tex]
[tex]\Delta V = 4\pi \cdot (20\,in)^{2}\cdot (0.01\,in)[/tex]
[tex]\Delta V \approx 50.265\,in^{3}[/tex]
b) The surface area of the sphere is:
[tex]A_{s} = 4\pi\cdot r^{2}[/tex]
The total differential of the surface area of the sphere is:
[tex]\Delta A_{s} = 8\pi \cdot r\,\Delta r[/tex]
[tex]\Delta A_{s} = 8\pi \cdot (20\,in)\cdot (0.01\,in)[/tex]
[tex]\Delta A_{s} \approx 5.027\,in^{2}[/tex]