Answer :
Answer: [tex]2SO_3(g)+2NO(g)\rightleftharpoons 2SO_2(g)+2NO_2(g)[/tex]
Explanation:
Relation of [tex]K_p[/tex] with [tex]K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta ng}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure
[tex]K_c[/tex] = equilibrium constant in terms of concentration
R = Gas constant
T = temperature
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}[/tex]
[tex]K_p=K_c[/tex] when [tex]\Delta n_g[/tex] = 0
a) [tex]4NH_3(g)+3O_2(g)\rightleftharpoons 2N_2(g)+6H_2O(g)[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]8-7=1[/tex]
b) [tex]2SO_3(g)+2NO(g)\rightleftharpoons 2SO_2(g)+2NO_2(g)[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]4-4=0[/tex]
c) [tex]4N_2(g)+2O_2(g)\rightleftharpoons 4N_2O(g)[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]4-6=-2[/tex]
d) [tex]6SO_2(g)+3O_2(g)\rightleftharpoons 6SO_3(g)[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]6-9=-3[/tex]
Thus for reaction ,[tex]2SO_3(g)+2NO(g)\rightleftharpoons 2SO_2(g)+2NO_2(g)[/tex] , [tex]K_p=K_c[/tex] as [tex]\Delta n_g[/tex] = 0