Answer :
Time is 244.89 minutes
Explanation:
Given:
Hypothetical diameter, d₀ = 2.4 X 10⁻² mm
Increase in diameter, d = 7.3 X 10⁻² mm
d₀ = 2.4 X 10⁻² mm
Time, t = 500 min
To solve K:
[tex]K = \frac{d^n - d_o^n}{t}[/tex]
On substituting the value:
[tex]K = \frac{(7.3 X 10^-^2)^2^.^2 - (2.4 X 10^-^2)^2^.^2}{500} \\\\\\K = 5.8 X 10^-^6 mm^2^.^2/min[/tex]
From the value of K, t can be calculated as:
[tex]t = \frac{d^2^.^2 - d_o^2^.^2}{K} \\\\t = \frac{(5.5 X 10^-^2)^2^.^2 - (2.4 X 10^-^2)^2^.^2}{5.8 X 10^-^6} \\\\t = 244.89 min[/tex]