Answered

The decomposition of nitramide, O 2 NNH 2 , in water has the given chemical equation and rate law. O 2 NNH 2 ( aq ) ⟶ N 2 O ( g ) + H 2 O ( l ) rate = k [ O 2 NNH 2 ] [ H + ] A proposed mechanism for this reaction is:________. ( 1 ) O 2 NNH 2 ( aq ) k 1 ⇌ k − 1 O 2 NNH − ( aq ) + H + ( aq ) (fast equilibrium) ( 2 ) O 2 NNH − ( aq ) k 2 −→ N 2 O ( g ) + OH − ( aq ) (slow) ( 3 ) H + ( aq ) + OH − ( aq ) k 3 −→ H 2 O ( l ) (fast)

Answer :

znk

Answer:

[tex]\large \boxed{{\text{rate} = k\dfrac{[\text{ O$_{2}$NNH$_{2}$]}}{[\text{H}^{+}]}} }[/tex]

Explanation:

O₂NNH₂⟶ N₂O + H₂O  

I think you are asking us to derive the rate law from the proposed mechanism.

A. The mechanism

[tex]\rm O_{2}NNH_{2}\xrightarrow[k_{-1}]{k_{1}} O_{2}NNH^{-} + H^{+} \,(fast \, equilibrium)\\\rm O_{2}NNH^{-} \xrightarrow{k_{2}} N_{2}O + \text{OH}^{-} \,(slow)\\\rm H^{+} +\text{OH}^{-}\xrightarrow{k_{3}} H_{2}O\, (fast)[/tex]

B. The rate expressions

[tex]-\dfrac{\text{d[O$_{2}$NNH$_{2}$]} }{\text{d}t} = k_{1}[\text{ O$_{2}$NNH$_{2}$]} - k_{-1}[\text{O$_{2}$NNH$^{-}$]}[\text{H}^{+}]\\\\-\dfrac{\text{d[O$_{2}$NNH$^{-}$]}}{\text{d}t} = k_{2}[\text{ O$_{2}$NNH$^{-}$}]\\\\[/tex]

The first step is an equilibrium, so the rates of the forward and reverse reactions are equal. The equilibrium is only slowly leaking away O₂NNH⁻ to form product.

[tex]k_{1}[\text{ O$_{2}$NNH$_{2}$]} = k_{-1}[\text{O$_{2}$NNH$^{-}$]}[\text{H}^{+}][/tex]

[tex][\text{O$_{2}$NNH$^{-}$]} = \dfrac{k_{1}}{k_{-1}}\times \dfrac{[\text{ O$_{2}$NNH$_{2}$]}}{[\text{H}^{+}]}[/tex]

C. The rate law

Substitute into the rate law for the slow step.

[tex]-\dfrac{\text{d[O$_{2}$NNH$^{-}$]}}{\text{d}t} = \dfrac{k_{1}k_{2}}{k_{-1}}\times \dfrac{[\text{ O$_{2}$NNH$_{2}$]}}{[\text{H}^{+}]}\\\\\text{rate} = k \dfrac{[\text{ O$_{2}$NNH$_{2}$]}}{[\text{H}^{+}]}\\\\\text{The rate law for the reaction is $\large \boxed{\text{rate} = k\dfrac{[\text{ O$_{2}$NNH$_{2}$]}}{[\text{H}^{+}]} }$}[/tex]