Answer :

Answer:

Measure of angle 'VPJ' is 140 degrees.

Step-by-step explanation:

Given:

Measure of arc 'PIV' and measure of arc 'PKV'.

'PIV' = 7/2 times of 'PKV'

Lets say that PKV is 'x'.

⇒ [tex]m(PIV)=\frac{7}{2} \times x[/tex]

⇒ [tex]m(PIV)=3.5x[/tex]

Note:

A full circle has an arc angle measure of 360.

So,

⇒ [tex]3.5x+x=360[/tex]

⇒ [tex]4.5x=360[/tex]

⇒ [tex]x=\frac{360}{4.5}[/tex]

⇒ [tex]x=80[/tex]

The measure of arc 'PKV' = 80 degrees.

We have to find angle 'VPJ' that is having a linear pair with angle 'VPL'.

So before finding we 'VPJ' have to find 'VPL'.

And

According to the theorem:

The angle formed by the tangent and the chord is half the measure of the intercepted arc.

Then.

⇒ [tex]\angle VPL=\frac{m\ arc\ (PKV)}{2}[/tex]

⇒ [tex]\angle VPL=\frac{80}{2}[/tex]

⇒ [tex]\angle VPL=40[/tex] degrees

⇒ And from linear pair .

⇒ [tex]m\angle VPL +m \angle VPJ =180[/tex]

⇒ [tex]40 +m \angle VPJ =180[/tex]

⇒ [tex]m \angle VPJ =180-40[/tex]

⇒ [tex]m \angle VPJ =140[/tex] degrees.

So measure of angle 'VPJ' is 140 degrees.

${teks-lihat-gambar} jitushashi143
${teks-lihat-gambar} jitushashi143

Other Questions