Answer :

Given:

[tex]$\frac{x+4}{x-1}-\frac{5}{x^{2}-1}[/tex]

To find:

The simplified rational expression by subtraction.

Solution:

Let us factor [tex]x^2-1[/tex]. It can be written as [tex]x^2-1^2[/tex].

[tex]x^2-1^2=(x-1)(x+1)[/tex] using algebraic identity.

[tex]$\frac{x+4}{x-1}-\frac{5}{x^{2}-1}=\frac{x+4}{x-1}-\frac{5}{(x+1)(x-1)}[/tex]

LCM of [tex]x-1,(x+1)(x-1)=(x+1)(x-1)[/tex]

Make the denominators same using LCM.

Multiply and divide the first term by (x + 1) to make the denominator same.

                        [tex]$=\frac{(x+4)(x+1)}{(x-1)(x+1)}-\frac{5}{(x-1)(x+1)}[/tex]

Now, denominators are same, you can subtract the fractions.

                        [tex]$=\frac{(x+4)(x+1)-5}{(x-1)(x+1)}[/tex]

Expand [tex](x+4)(x+1)-5[/tex].

                        [tex]$=\frac{x^2+4x+x+4-5}{(x-1)(x+1)}[/tex]

                        [tex]$=\frac{x^{2}+5 x-1}{(x-1)(x+1)}[/tex]

[tex]$\frac{x+4}{x-1}-\frac{5}{x^{2}-1}=\frac{x^{2}+5 x-1}{(x-1)(x+1)}[/tex]