Simplify square root parenthesis 1 minus cosine theta parenthesis times parenthesis 1 plus cosine theta parenthesis divided by cosine squared theta A. square root sine theta B. ±sin Θ C. ±cos Θ D. |tan Θ|

Answer :

The answer is D.  |tan Θ|

√[(1 − cos θ)(1+cos θ)] / cos^2 θ
√(1 - cos^2 θ) /  cos^2 θ
  |tan Θ|

Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.

 

 

 


Answer:

option D is correct.

Step-by-step explanation:

we are given the function [tex]\sqrt{\frac{(1-\cos \theta )(1+\cos \theta )}{\cos ^2\theta }}[/tex]

we know that the expansion is given by [tex](1-\cos \theta )(1+\cos \theta )=1-\cos ^2\theta =\sin ^2\theta[/tex]

so [tex]\sqrt{\frac{(1-\cos \theta )(1+\cos \theta )}{\cos ^2\theta }}=\sqrt{\frac{\sin ^2\theta }{\cos ^2\theta }}=\sqrt{\tan ^2\theta }=|\tan \theta |[/tex]

Hence, option D is correct.

Other Questions