Answered

The electric field of a sinusoidal electromagnetic wave obeysthe equation

E = - (375 (V/m))sin ((5.97 * 10^15(rad/s)) t +(1.99 * 10^7(rad/m))x).

What is the amplitude of the electric field of this wave?

What is the amplitude of the magnetic field of this wave?

What is the frequency of the wave?

What is the wavelength of the wave?

What is the period of the wave?

What is the speed of the wave?

Answer :

lublana

Answer with Explanation:

We are given that

[tex]E=-(375V/m)sin(5.97\times 10^{15}(rad/s)t+(1.99\times 1067(rad/m)x)[/tex]

a.General equation of electric field wave

[tex]E=E_0sin(\omega t+kx)[/tex]

Where [tex]E_0[/tex]=Amplitude of electric field wave

By comparing

[tex]\omega=5.97\times 10^{15}rad/s[/tex]

[tex]k=1.99\times 10^7rad/m[/tex]

a.Amplitude of electric field wave=[tex]E_0=375V/m[/tex]

b.Amplitude of magnetic field wave,[tex]B_0=\frac{E_0}{c}[/tex]

Where [tex]c=3\times 10^8 m/s[/tex]

Amplitude of magnetic field wave=[tex]B_0=\frac{375}{3\times 10^8}=125\times 10^{-8} T[/tex]

c.Frequency of wave,[tex]f=\frac{\omega}{2\pi}=\frac{5.97\times 10^{15}}{2\pi}=0.95\times 10^{15}Hz[/tex]

d.Wavelength,[tex]\lambda=\frac{2\pi}{k}[/tex]

[tex]\lambda=\frac{2\pi}{1.99\times 10^7}=3.16\times 10^{-7} m[/tex]

e.Period of wave,[tex]T=\frac{1}{f}=\frac{1}{0.95\times 10^{15}}=1.05\times 10^{-15} s[/tex]

f.Speed of wave,[tex]v=f\lambda=0.95\times 10^{15}\times 3.16\times 10^{-7}=3.00\times 10^8 m/s[/tex]

Other Questions