Use the given conditions to write an equation for the line in​ point-slope form and in​ slope-intercept form.
Passing through (7,1) with​ x-intercept -5
Write an equation for the line in point-slope form...
WILL GIVE BRAINLIEST!!!

Answer :

PunIntended

Answer:

[tex]y-1=\frac{1}{12} (x-7)[/tex]

Step-by-step explanation:

Point-slope form is: [tex]y-y_1=m(x-x_1)[/tex] , where (x_1, y_1) is the point given and m is the slope.

The problem gives us two points, actually: (7, 1) and (-5, 0); the second one is the x-intercept because x-intercepts always have a y-coordinates of 0. We can use these two points to find the slope, which is just change in y over change in x: [tex]\frac{1-0}{7-(-5)}=\frac{1}{12}[/tex]. So, the slope = m = 1/12.

Now, we have our point (7, 1) and the slope 1/12, so just plug these into the above format: [tex]y-1=\frac{1}{12} (x-7)[/tex]

Hope this helps!

amna04352

Answer:

y - 1 = (1/12)(x - 7)

y = (1/12)(x + 5)

You can use either of these

Step-by-step explanation:

Slope using (-5,0) and (7,1)

m = (0-1)/(-5-7) = -1/-12

m = 1/12

y - 1 = (1/12)(x - 7)

Or,

y - 0 = (1/12)(x - -5)

y = (1/12)(x + 5)

Other Questions