Answer :
Answer:
a) [tex]v = v_{o} - \left(9.8\,\frac{m}{s^{2}} \right)\cdot t[/tex], b) [tex]s = s_{o} + v_{o}\cdot t - \left(9.8\,\frac{m}{s^{2}} \right)\cdot t^{2}[/tex], c) [tex]t = \frac{v_{o}}{9.8\,\frac{m}{s^{2}} }[/tex], d) [tex]t = \frac{v_{o}}{2\cdot \left(9.8\,\frac{m}{s^{2}}\right)}+\frac{\sqrt{v_{o}^{2}+4\cdot s_{o}\cdot \left(9.8\,\frac{m}{s^{2}} \right)} }{2\cdot \left(9.8\,\frac{m}{s^{2}} \right)}[/tex]
Explanation:
a) The acceleration of the object is:
[tex]a = - 9.8\,\frac{m}{s^{2}}[/tex]
The velocity function is found by integration:
[tex]v = v_{o} - \left(9.8\,\frac{m}{s^{2}} \right)\cdot t[/tex]
b) The position function is found by integrating the velocity function:
[tex]s = s_{o} + v_{o}\cdot t - \left(9.8\,\frac{m}{s^{2}} \right)\cdot t^{2}[/tex]
c) The time when the object reaches its highest point ocurrs when speed is zero:
[tex]0\,m = v_{o} - \left(9.8\,\frac{m}{s^{2}} \right)\cdot t[/tex]
[tex]t = \frac{v_{o}}{9.8\,\frac{m}{s^{2}} }[/tex]
d) The time when the object hits the ground occurs when [tex]s = 0\,m[/tex]. The roots are found by solving the second-order polynomial:
[tex]t = \frac{-v_{o}\pm \sqrt{v_{o}^{2}+4\cdot s_{o}\cdot \left(9.8\,\frac{m}{s^{2}} \right)} }{2\cdot (-9.8\,\frac{m}{s^{2}} )}[/tex]
[tex]t = \frac{v_{o}}{2\cdot \left(9.8\,\frac{m}{s^{2}}\right)} \mp \frac{\sqrt{v_{o}^{2}+4\cdot s_{o}\cdot \left(9.8\,\frac{m}{s^{2}} \right)} }{2\cdot \left(9.8\,\frac{m}{s^{2}} \right)}[/tex]
Since time is a positive variable and [tex]v_{o} < \sqrt{v_{o}^{2}+4\cdot s_{o}\cdot \left(9.8\,\frac{m}{s^{2}} \right)}[/tex], the only possible solution is:
[tex]t = \frac{v_{o}}{2\cdot \left(9.8\,\frac{m}{s^{2}}\right)}+\frac{\sqrt{v_{o}^{2}+4\cdot s_{o}\cdot \left(9.8\,\frac{m}{s^{2}} \right)} }{2\cdot \left(9.8\,\frac{m}{s^{2}} \right)}[/tex]