Juan needs a right cylindrical storage tank that holds between
110 and 115 cubic feet of water.
Using whole numbers only, provide the radius and height for 3
different tanks that hold between 110 and 115 cubic feet of
water.
Tank #1
Tank #2
Tank #3
radius =
ft.
radius =
ft.
radius =
ft
height =
ft.
height =
height =
e include the radius and height for each of the three tanks and the
e volume of a cylinder in your answer.​

Answer :

calculista

Answer:

tank #1:  [tex]r=2\ ft, h=9\ ft,V=113.04\ ft^3[/tex]

tank #2:  [tex]r=3\ ft, h=4\ ft,V=113.04\ ft^3[/tex]

tank #3:  [tex]r=4\ ft, h=2\ ft,V=100.48\ ft^3[/tex]

Step-by-step explanation:

we know that

The volume of a right cylindrical storage is given by the formula

[tex]V=\pi r^{2}h[/tex]

we have that

Juan needs a right cylindrical storage tank that holds between

110 and 115 cubic feet of water

so

For the maximum volume

[tex]115=(3.14)r^{2}h\\36.62=r^{2}h[/tex] ----> equation A

For the minimum volume

[tex]110=(3.14)r^{2}h\\35.03=r^{2}h[/tex] ____> equation B

Tank # 1

Assume a value for r and then solve for h

For r=2 ft

using equation A

substitute

[tex]36.62=(2)^{2}h[/tex]

solve for h

[tex]h=36.62/4\\h=9.2\ ft[/tex]

Remember that are whole numbers

so

[tex]h=9\ ft\\r=2\ ft[/tex]

Verify the volume

[tex]V=(3.14)(2)^{2}(9)=113.04\ ft^3[/tex]

[tex]110 \leq 113.04 \leq 115[/tex] ----> is ok

Tank # 2

Assume a value for r and then solve for h

For r=3 ft

using equation B

substitute

[tex]35.03=(3)^{2}h[/tex]

solve for h

[tex]h=35.03/9\\h=3.9\ ft[/tex]

Remember that are whole numbers

so

[tex]h=4\ ft\\r=3\ ft[/tex]

Verify the volume

[tex]V=(3.14)(3)^{2}(4)=113.04\ ft^3[/tex]

[tex]110 \leq 113.04 \leq 115[/tex] ----> is ok

Tank # 3

Assume a value for r and then solve for h

For r=4 ft

using equation A

substitute

[tex]36.62=(4)^{2}h[/tex]

solve for h

[tex]h=36.62/16\\h=2.3\ ft[/tex]

Remember that are whole numbers

so

[tex]h=2\ ft\\r=4\ ft[/tex]

Verify the volume

[tex]V=(3.14)(4)^{2}(2)=100.48\ ft^3[/tex]

[tex]110 \leq 100.48 \leq 115[/tex] ----> is ok

Other Questions