Answer :

Given:

In the given triangle,

With respect to 30°, the perpendicular = 9, the base = x and the hypotenuse = y

To find the value of x and y.

Formula

By Trigonometric ratio we get,

[tex]sin\theta = \frac{opposite}{Hypotenuse}[/tex] and

[tex]tan\theta =[/tex] [tex]\frac{opposite}{adjacent}[/tex]

Now,

Putting, perpendicular = 9 and [tex]\theta=30^\circ[/tex] we get,

[tex]sin30^\circ = \frac{9}{y}[/tex]

or, [tex]\frac{1}{2} = \frac{9}{y}[/tex]

or, [tex]y =18[/tex] [ by cross multiplication]

Again,

[tex]tan30^\theta = \frac{9}{x}[/tex]

or, [tex]\frac{1}{\sqrt{3} } = \frac{9}{x}[/tex]

or, [tex]x = 9\sqrt{3}[/tex] [ by cross multiplication]

Hence,

The value of x and y is 9√3 unit and 18 unit respectively.

Other Questions