zxszxs040
Answered

Consider a Hydrogen atom in the 3rd excited state (n = 4). The maximum wavelength of light that can be emitted is
9.7 x 10^-8 m
1.9 x 10^-6 m
1.03 x 10^-7 m
2.5 x 10^-5 m

Answer :

Answer: The maximum wavelength of light that can be emitted is [tex]1.9\times 10^{-6}m[/tex]

Explanation:

[tex]E=\frac{hc}{\lambda}[/tex]

[tex]\lambda[/tex] = Wavelength of radiation

E= energy

For wavelength to be maximum, energy would be minimum, i.e the electron will jump from n=4  level to n =3

Using Rydberg's Equation:

[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )\times Z^2[/tex]

Where,

[tex]R_H[/tex] = Rydberg's Constant  =[tex]1.097\times 10^7m^{-1}[/tex]

[tex]n_f[/tex] = Higher energy level = 3

[tex]n_i[/tex] = Lower energy level = 4

Z= atomic number = 1 (for hydrogen)

[tex]\frac{1}{\lambda}=1.097\times 10^7\left(\frac{1}{3^2}-\frac{1}{4^2} \right )\times 1^2[/tex]

[tex]\frac{1}{\lambda}=0.053\times 10^7[/tex]

[tex]\lambda=1.9\times 10^{-6}m[/tex]

Thus the maximum wavelength of light that can be emitted is [tex]1.9\times 10^{-6}m[/tex]

Other Questions