Answer :

Space

Answer:

[tex]\displaystyle \lim_{x \to -\infty} \frac{5x^2 + 6x}{\sqrt{16x^4 - 5x^2}} = \frac{5}{16}[/tex]

General Formulas and Concepts:

Calculus

Limits

Coefficient Power Method:                                                                                   [tex]\displaystyle \lim_{x \to \pm \infty} \frac{ax^n}{bx^n} = \frac{a}{b}[/tex]

Step-by-step explanation:

We are given the limit:

[tex]\displaystyle \lim_{x \to -\infty} \frac{5x^2 + 6x}{\sqrt{16x^4 - 5x^2}}[/tex]

We can see that if we "simplify" the radical, resulting in a degree of 2. Let's use Coefficient Power Method to evaluate the limit:

[tex]\displaystyle \lim_{x \to -\infty} \frac{5x^2 + 6x}{\sqrt{16x^4 - 5x^2}} = \frac{5}{16}[/tex]

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

Other Questions