Answer :
Answer:
Wavelength at which the light reflected by the film is brightest = 567.5 nm
Explanation:
We are given;
index of refraction n2 = 1.33
Thickness;(t) = 320 nm
Now the wavelength at which the light reflected by the film is brightest is gotten from the formula for path difference in critical interference as;
Path difference = (m + ½)(λ/n)
Where;
path difference = 2 x thickness = 2(320) = 640 nm
λ = Wavelength at which the light reflected by the film is brightest
n is Refractive index
m is an integer = 0,1,2,3...
Thus; at m = 0;
We have;
640 = (0 + ½)(λ/1.33)
640 = (λ/2.66)
λ = 640 x 2.66
λ = 1702.4 nm
at m = 1;
We have;
640 = (1 + ½)(λ/1.33)
640 = (3/2)(λ/1.33)
λ = 640 x 1.33 x 2/3
λ = 567.5 nm
at m = 2;
We have;
640 = (2 + ½)(λ/1.33)
640 = (5/2)(λ/1.33)
λ = 640 x 2 x 1.33/5
λ = 340.5 nm
Since we are told that the wavelength is between 400 – 690 nm.
Thus, the wavelength at which the light reflected by the film is brightest is the higher value gotten that is between 400nm and 690nm.
Thus, Wavelength at which the light reflected by the film is brightest = 567.5 nm