Answer :
We have been given an equation [tex]55^2=50^2+35^2-2(50)(35)\text{cos}(A)[/tex]. We are asked to find the values of [tex]\text{cos}(A)[/tex].
First of all, we will square the terms.
[tex]3025=2500+1225-3500\text{cos}(A)[/tex]
[tex]3025=3725-3500\text{cos}(A)[/tex]
Now we will subtract 3725 from both sides as:
[tex]3025-3725=3725-3725-3500\text{cos}(A)[/tex]
[tex]-700=-3500\text{cos}(A)[/tex]
Switch sides:
[tex]-3500\text{cos}(A)=-700[/tex]
Upon dividing both sides by [tex]-3500[/tex], we will get:
[tex]\frac{-3500\text{cos}(A)}{-3500}=\frac{-700}{-3500}[/tex]
[tex]\text{cos}(A)=\frac{7}{35}[/tex]
[tex]\text{cos}(A)=\frac{1}{5}[/tex]
[tex]\text{cos}(A)=0.2[/tex]
Therefore, the values of [tex]\text{cos}(A)[/tex] is 0.2.
Answer:
Step-by-step explanation:
SSS
0.2
Nearest degree is... 78°