Answer :

We have been given an equation [tex]55^2=50^2+35^2-2(50)(35)\text{cos}(A)[/tex]. We are asked to find the values of [tex]\text{cos}(A)[/tex].

First of all, we will square the terms.

[tex]3025=2500+1225-3500\text{cos}(A)[/tex]

[tex]3025=3725-3500\text{cos}(A)[/tex]

Now we will subtract 3725 from both sides as:

[tex]3025-3725=3725-3725-3500\text{cos}(A)[/tex]

[tex]-700=-3500\text{cos}(A)[/tex]

Switch sides:

[tex]-3500\text{cos}(A)=-700[/tex]

Upon dividing both sides by [tex]-3500[/tex], we will get:

[tex]\frac{-3500\text{cos}(A)}{-3500}=\frac{-700}{-3500}[/tex]

[tex]\text{cos}(A)=\frac{7}{35}[/tex]

[tex]\text{cos}(A)=\frac{1}{5}[/tex]

[tex]\text{cos}(A)=0.2[/tex]

Therefore, the values of [tex]\text{cos}(A)[/tex] is 0.2.

Answer:

Step-by-step explanation:

SSS

0.2

Nearest degree is... 78°