Answer:
[tex]\sin\left(\frac{4\pi}{3}\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\frac{4\pi}{3}\right)=-\frac{1}{2}\\\tan\left(\frac{4\pi}{3}\right)=\sqrt{3}\\\csc\left(\frac{4\pi}{3}\right)=-\frac{2\sqrt{3}}{3}\\\sec\left(\frac{4\pi}{3}\right)=-2\\\cot\left(\frac{4\pi}{3}\right)=\frac{\sqrt{3}}{3}[/tex]
We first find the corresponding angle of 4π/3.
[tex]\frac{4\pi}{3}-\pi=\frac{\pi}{3}[/tex]. And 4π/3 is in the third quadrant. There tan and cot are positive and rest are negative.
[tex]\sin\left(\frac{4\pi}{3}\right)=-\sin\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\frac{4\pi}{3}\right)=-\cos\left(\frac{\pi}{3}\right)=-\frac{1}{2}\\\tan\left(\frac{4\pi}{3}\right)=\tan\left(\frac{\pi}{3}\right)=\sqrt{3}\\\csc\left(\frac{4\pi}{3}\right)=-\csc\left(\frac{\pi}{3}\right)=-\frac{2}{\sqrt{3}}=-\frac{2\sqrt{3}}{3}\\\sec\left(\frac{4\pi}{3}\right)=-\sec\left(\frac{\pi}{3}\right)=-2\\\cot\left(\frac{4\pi}{3}\right)=\cot\left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}[/tex]
Learn more: https://brainly.com/question/12356025