tapiacelina
Answered

Evaluate (if possible) the six trigonometric functions of the real number t. (if an answer is underfunded, enter UNDEFINED)
T= 4 π/3

Sin t=
Cos t=
Tan t=
Csc t=
Sec t=
Cot t=

Evaluate (if possible) the six trigonometric functions of the real number t. (if an answer is underfunded, enter UNDEFINED) T= 4 π/3 Sin t= Cos t= Tan t= Csc t= class=

Answer :

Answer:

Step-by-step explanation:

sin= - square root 3/2                

cos= -1/2

tan= square root 3

csc= -2 square root 3/2

sec= -2

cot= square root3/4

Cetacea

Answer:

[tex]\sin\left(\frac{4\pi}{3}\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\frac{4\pi}{3}\right)=-\frac{1}{2}\\\tan\left(\frac{4\pi}{3}\right)=\sqrt{3}\\\csc\left(\frac{4\pi}{3}\right)=-\frac{2\sqrt{3}}{3}\\\sec\left(\frac{4\pi}{3}\right)=-2\\\cot\left(\frac{4\pi}{3}\right)=\frac{\sqrt{3}}{3}[/tex]

We first find the corresponding angle of 4π/3.

[tex]\frac{4\pi}{3}-\pi=\frac{\pi}{3}[/tex]. And 4π/3 is in the third quadrant. There tan and cot are positive and rest are negative.

[tex]\sin\left(\frac{4\pi}{3}\right)=-\sin\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\frac{4\pi}{3}\right)=-\cos\left(\frac{\pi}{3}\right)=-\frac{1}{2}\\\tan\left(\frac{4\pi}{3}\right)=\tan\left(\frac{\pi}{3}\right)=\sqrt{3}\\\csc\left(\frac{4\pi}{3}\right)=-\csc\left(\frac{\pi}{3}\right)=-\frac{2}{\sqrt{3}}=-\frac{2\sqrt{3}}{3}\\\sec\left(\frac{4\pi}{3}\right)=-\sec\left(\frac{\pi}{3}\right)=-2\\\cot\left(\frac{4\pi}{3}\right)=\cot\left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}[/tex]

Learn more: https://brainly.com/question/12356025

Other Questions