Answer :
Answer:
a)5.88J
b)-5.88J
c)0.78m
d)0.24m
Explanation:
a) W by the block on spring is given by
W= [tex]\frac{1}{2}[/tex]kx² = [tex]\frac{1}{2}[/tex](530)(0.149)² = 5.88 J
b) Workdone by the spring = - Workdone by the block = -5.88J
c) Taking x = 0 at the contact point we have U top = U bottom
So, mg[tex]h_o[/tex] = [tex]\frac{1}{2}[/tex]kx² - mgx
And, [tex]h_o[/tex]= ( [tex]\frac{1}{2}[/tex]kx² - mgx )/(mg) = [tex][\frac{1}{2} (530)(0.149^2)-(0.645)(9.8)(0.149)[/tex]]/(0.645x9.8)
[tex]h_o[/tex]= 0.78m
d) Now, if the initial initial height of block is 3[tex]h_o[/tex]
[tex]h_o[/tex] = 3 x 0.78 = 2.34m
then, [tex]\frac{1}{2}[/tex]kx² - mgx - mg[tex]h_o[/tex] =0
[tex]\frac{1}{2}[/tex](530)x² - [(0.645)(9.8)x] - [(0.645)(9.8)(2.34) = 0
265x² - 6.321x - 14.8 = 0
a=265
b=-6.321
c=-14.8
By using quadratic eq. formula, we'll have the roots
x= 0.24 or x=-0.225
Considering only positive root:
x= 0.24m (maximum compression of the spring)