Answer :
We know that the given side lengths are x and the height is x.
Therefore, the area of the base = [tex]A = x * x[/tex]
[tex]Formula =\ \textgreater \ volume = length*width*height [/tex]
[tex]To \ find \ the \ volume \ of \ 1 \ slab, \ multiply \ by \ the \ height[/tex] [tex]x -3[/tex]
[tex]= x*x*(x-3)[/tex]
[tex]Volume \ of \ 25 \ slabs =[/tex] [tex]25*x^2*(x-3)=350000[/tex]
[tex]350,000/25 = 14,000 [/tex]
[tex]x^3 - 3x^2 - 14000 [/tex]
[tex]= 25.14[/tex]
[tex] Rounded => x=25[/tex]
Therefore, the area of the base = [tex]A = x * x[/tex]
[tex]Formula =\ \textgreater \ volume = length*width*height [/tex]
[tex]To \ find \ the \ volume \ of \ 1 \ slab, \ multiply \ by \ the \ height[/tex] [tex]x -3[/tex]
[tex]= x*x*(x-3)[/tex]
[tex]Volume \ of \ 25 \ slabs =[/tex] [tex]25*x^2*(x-3)=350000[/tex]
[tex]350,000/25 = 14,000 [/tex]
[tex]x^3 - 3x^2 - 14000 [/tex]
[tex]= 25.14[/tex]
[tex] Rounded => x=25[/tex]
Answer:
x ≈ 118 ft
Step-by-step explanation:
To get an expression for the volume of all slabs, we can use the formula of volume of cuboid 'V', which is equal to the product of its length 'x', breadth 'x' and height 'x-3' i.e.
[tex]V = x.x.(x-3)[/tex]
For 25 slabs,
[tex]V = 25x.x.(x-3)[/tex]
Since, V cannot be more than 350,000 [tex]ft^{3}[/tex], therefore,
[tex]350000 = 25x^{2} (x-3)[/tex]
which can be written as:
either:
[tex]350000 = 25x^{2}[/tex]
[tex]x = \sqrt{ \frac{350000}{25}[/tex]
x ≈ 118 ft
or:
[tex]x - 3 = 350000[/tex]
[tex]x = 350003[/tex]
which is not possible.
Hence x should be 118 ft