Answer :
Answer:
the speed of 0.10 sphere when it is moved to 0.20 kg to the left is : [tex]3.3337*10^{-5} \ m/s[/tex]
Explanation:
Using the expression of the Change in Gravitational Potential Energy:
[tex]U= -(\frac{ Gm_1m_2 }{r_2} - \frac{ Gm_1m_2 }{r_1}) \\ \\ U=Gm_1m_2 (\frac{ 1 }{r_2} - \frac{ 1 }{r_1})[/tex]
So when the sphere exerts just 10 kg mass; the change in the gravitational potential energy is :
[tex]U_1=Gm_1m_2 (\frac{ 1 }{r_2} - \frac{ 1 }{r_1})[/tex]
[tex]U_1=6.67*10^{-11}*0.1 \ kg*10 \ kg(\frac{ 1 }{0.6 \ m} - \frac{ 1 }{0.8 \ m})[/tex]
[tex]U_1 = 2.778*10^{-11} J[/tex]
the change in the gravitational potential energy when the sphere exerts just 5 kg mass is ;
[tex]U_2=Gm_1m_2 (\frac{ 1 }{r_2} - \frac{ 1 }{r_1})[/tex]
[tex]U_2=6.67*10^{-11}*0.1 \ kg*5 \ kg(\frac{ 1 }{0.4 \ m} - \frac{ 1 }{0.2 \ m})[/tex]
[tex]U_2 = -8.335*10^{-11} J[/tex]
The net total change is:
[tex]U_{total } = U_1 +U_2[/tex]
[tex]U_{total} = 2.778*10^{-11} + (-8.335*10^{-11})[/tex]
[tex]U_{total} = -5.557*10^{-11}[/tex]
We all know that for there to be a balance ;loss of gravitational potential energy must be equal to the gain in kinetic energy .
SO;
K.E = [tex]5.557*10^{-11}[/tex]
[tex]\frac{1}{2}mv^2 = 5.557*10^{-11}[/tex]
[tex]v^2 = \frac{2*5.557*10^{-11} \ J}{m_1}[/tex]
[tex]v=\sqrt{ \frac{2*5.557*10^{-11} \ J}{0. 1 \kg}[/tex]
v = [tex]3.3337*10^{-5} \ m/s[/tex]
Thus, the speed of 0.10 sphere when it is moved to 0.20 kg to the left is : [tex]3.3337*10^{-5} \ m/s[/tex]
The speed of 0.10 sphere when it is moved to 0.20 kg to the left is :3.3337 *10^-5 m/s
What is speed ?
The speed of any object is defined as the movement of any object with respect to the time.
By using the expression of the Change in Gravitational Potential Energy:
[tex]U=-Gm_1m_2(\dfrac{1}{r_2}-\dfrac{1}{r_1})[/tex][tex]U_2=-Gm_1m_2(\dfrac{1}{r_2}-\dfrac{1}{r_1})[/tex]
So when the sphere exerts just 10 kg mass; the change in the gravitational potential energy is :
[tex]U_1=-Gm_1m_2(\dfrac{1}{r_2}-\dfrac{1}{r_1})[/tex]
[tex]U_1=- 6.67\times 10^{-11}\times 0.1\times 10(\dfrac{1}{0.6}-\dfrac{1}{0.8})[/tex]
[tex]U_1=2.778\times 10^{-11][/tex]
The change in the gravitational potential energy when the sphere exerts just 5 kg mass is ;
[tex]U_2=-Gm_1m_2(\dfrac{1}{r_2}-\dfrac{1}{r_1})[/tex]
[tex]U_2=- 6.67\times 10^{-11}\times 0.1\times 5(\dfrac{1}{0.4}-\dfrac{1}{0.2})[/tex]
[tex]U_2=-8.335\times 10^{-11}\ J[/tex]
The net total change is:
[tex]U_{total}=U_1+U_2[/tex]
[tex]U_{total}=2.778\times 10^{-11}+(-8.335\times 10^{-11})[/tex]
[tex]U_{tot\leq al}=-5.557\times 10^{-11}[/tex]
We all know that for there to be a balance ;loss of gravitational potential energy must be equal to the gain in kinetic energy .
SO;
[tex]\rm KE=5.557\times 10^{-11}[/tex]
[tex]\dfrac{1}{2}mv^2=5.557\times 10^{-11}[/tex]
[tex]v^2=\dfrac{2\times 5.557\times 10^{-11}}{m}[/tex]
[tex]v=\sqrt{\dfrac{2\times 5.557\times 10^{-11}}{m}}[/tex]
[tex]v=3.337\times 10^{-5}\ \frac{m}{s}[/tex]
Thus, the speed of 0.10 sphere when it is moved to 0.20 kg to the left is : [tex]v=3.337\times 10^{-5}\ \frac{m}{s}[/tex]
To know more about speed follow
https://brainly.com/question/4931057