Answer :
Answer:
A diameter of a circle has endpoints p(-10, -2) and q(4, 6).
a, The center of circle is the midpoint of diameter:
O = ((px + qx)/2, (py + qy)/2) = ((-10 + 4)/2, (-2 + 6)/2) = (-3, 2)
b, Radius = Oq
= sqrt((Ox - qx)^2 + (Oy - qy)^2)
= sqrt((-3 - 4)^2 + (2 - 6)^2)
= sqrt(7^2 + 4^2)
= sqrt(65)
Hope this helps!
:)
Answer:
A) (-3,2)
B) sqrt(65)
C) (x + 3)² + (y - 2)² = 65
Step-by-step explanation:
Centre: midpoint of the diameter
(-10+4)/2, (-2+6)/2
(-3,2)
Radius = diameter/2
sqrt[(6--2)² + (4--10)²]/2
sqrt(65)
Equation:
(x - -3)² + (y - 2)² = (sqrt(65))²
(x + 3)² + (y - 2)² = 65