Answer :
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 - [tex]t_{A2}[/tex]) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 - [tex]t_{A2}[/tex] = 1100/3
[tex]t_{A2}[/tex] = 733.33 K
[tex]\Delta \bar{t}_{a} =\frac{t_{A_{1}}+t_{A_{2}}}{2} - \frac{t_{B_{1}}+t_{B_{2}}}{2}[/tex]
Where
[tex]\Delta \bar{t}_{a}[/tex] = Arithmetic mean temperature difference
[tex]t_{A_{1}[/tex] = Inlet temperature of the gas = 1100 K
[tex]t_{A_{2}[/tex] = Outlet temperature of the gas = 733.33 K
[tex]t_{B_{1}[/tex] = Inlet temperature of the air = 300 K
[tex]t_{B_{2}[/tex] = Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;
[tex]\Delta \bar{t}_{a} =\frac{1100+733.33}{2} - \frac{300+850}{2} = 341\tfrac{2}{3} \, K = 341.67 \, K[/tex]
Hence, from;
[tex]\dot{Q} = UA\Delta \bar{t}_{a}[/tex], we have
5912500 = 90 × A × 341.67
[tex]A = \frac{5912500 }{90 \times 341.67} = 192.3 \, m^2[/tex]
Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².