Answer :

We have been given that a sphere and a cylinder have the same radius and height.

We know that height of sphere is equal to its radius. So [tex]h=r[/tex].

Now we will use volume of sphere and volume of cylinder formula to solve our given problem.

Volume of cylinder: [tex]V=\pi r^2h[/tex], where,

r = Radius,

h = Height

Volume of sphere: [tex]V=\frac{4}{3}\pi r^3[/tex], where,

r = Radius.

Since height is equal to radius, so we will get:

[tex]V=\pi r^2\cdot r=\pi r^3[/tex]

Since volume of cylinder is [tex]18[/tex] cubic cm, so we will equate volume formula with [tex]18[/tex] as:

[tex]\pi r^3=18[/tex]

Let us solve for r.

[tex]\frac{\pi r^3}{\pi}=\frac{18}{\pi}[/tex]  

[tex]r^3=\frac{18}{\pi}[/tex]

[tex]r=\sqrt[3]{\frac{18}{\pi}}[/tex]

Upon substituting this value in volume of sphere formula, we will get:

[tex]V=\frac{4}{3}\pi\cdot \left(\sqrt[3]{\frac{18}{\pi}}\right)^3[/tex]

[tex]V=\frac{4}{3}\pi\cdot \frac{18}{\pi}[/tex]

[tex]V=\frac{4}{1}\cdot 6[/tex]

[tex]V=24[/tex]

Therefore, the volume of the sphere would be 24 cubic cm and option B is the correct choice.

Other Questions