Answer :

Answer:

sec (x)

Step-by-step explanation:

sec (x) tan (x) cos (x) csc (x) =

We know sec = 1/ cos

Tan = sin/cos

csc = 1/sin

Replacing into the expression

1/ cos (x) * sin(x)/ cos (x) * cos (x) * 1 / sin(x)

Canceling like terms

1/ cos (x)

sec(x)

Step-by-step explanation:

Step 1:  Simplify all of the trigonometric functions

[tex]sec(x) = \frac{1}{cos(x)}[/tex]

[tex]tan(x) = \frac{sin(x)}{cos(x)}[/tex]

[tex]cos(x) = cos(x)[/tex]

[tex]csc(x) = \frac{1}{sin(x)}[/tex]

[tex]\frac{1}{cos(x)}*\frac{sin(x)}{cos(x)}*\frac{cos(x)}{1}*\frac{1}{sin(x)}[/tex]

[tex]\frac{sin(x)cos(x)}{cos(x)cos(x)sin(x)}[/tex]

[tex]\frac{1}{cos(x)}[/tex]

[tex]sec(x)[/tex]

Answer:  [tex]sec(x)[/tex]

Other Questions