Answer :
Answer:
sec (x)
Step-by-step explanation:
sec (x) tan (x) cos (x) csc (x) =
We know sec = 1/ cos
Tan = sin/cos
csc = 1/sin
Replacing into the expression
1/ cos (x) * sin(x)/ cos (x) * cos (x) * 1 / sin(x)
Canceling like terms
1/ cos (x)
sec(x)
Step-by-step explanation:
Step 1: Simplify all of the trigonometric functions
[tex]sec(x) = \frac{1}{cos(x)}[/tex]
[tex]tan(x) = \frac{sin(x)}{cos(x)}[/tex]
[tex]cos(x) = cos(x)[/tex]
[tex]csc(x) = \frac{1}{sin(x)}[/tex]
[tex]\frac{1}{cos(x)}*\frac{sin(x)}{cos(x)}*\frac{cos(x)}{1}*\frac{1}{sin(x)}[/tex]
[tex]\frac{sin(x)cos(x)}{cos(x)cos(x)sin(x)}[/tex]
[tex]\frac{1}{cos(x)}[/tex]
[tex]sec(x)[/tex]
Answer: [tex]sec(x)[/tex]