Answer :
Answer:
The sound intensity of source #2 is 38.3 W/m²
Explanation:
Given;
sound intensity of source #1, I₁ = 38.3 W/m²
sound intensity of source #2, I₂ = 2.6 dB greater than 38.3 W/m²
To determine he sound intensity of source #2 in W/m², we must convert 2.6 dB to sound intensity in W/m².
[tex]10log\frac{I (W/m^2)}{I_o} = I (dB)\\\\10log\frac{I }{1*10^{-12}} = 2.6\\\\log(\frac{I }{1*10^{-12}})^{10} = 2.6\\\\10^{2.6} = (\frac{I }{1*10^{-12}})^{10} \\\\10^{\frac{2.6}{10}} = \frac{I }{1*10^{-12}}\\\\1.8197 = \frac{I }{1*10^{-12}}\\\\I = 1.8197 *1*10^{-12} = 1.8197 *10^{-12} \ W/m^2[/tex]
Thus, sound intensity of source #2 = 38.3 W/m² + 1.8197 x 10⁻¹² W/m² = 38.3 W/m²
Therefore, the sound intensity of source #2 is 38.3 W/m²