Answer :
Answer:6018
Step-by-step explanation:
Given Sequence
[tex]-282-266-250-234.....[/tex]
It represent an A.P. with
first term [tex]a=-282[/tex]
common difference [tex]d=16[/tex]
So sum of 51 term
[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]
[tex]S_{51}=\frac{51}{2}\times [2\times (-282)+(51-1)16][/tex]
[tex]S_{51}=\frac{51}{2}\times [-564+800][/tex]
[tex]S_{51}=\frac{51}{2}\times [236][/tex]
[tex]S_{51}=51\times 118[/tex]
[tex]S_{51}=6018[/tex]