Answer :
Answer:
[tex]T_1= \dfrac{F_gcos \theta_2}{sin (\theta_1+\theta_2)}[/tex]
Step-by-step explanation:
From the free body diagram attached below; we will see that
T₃ = Fg ------ (1)
Thus; as the system is in equilibrium, the net force in the x and y direction shows to be zero
Then;
[tex]\sum F_x= 0 \to T_2 Cos \theta _2 - T_1 cos \theta _1[/tex]
[tex]T_2 Cos \theta _2 = T_1 cos \theta _1 \ \ \ \ \ - - - (2)[/tex]
Also;
[tex]\sum F_y =0 \to T_2sin \theta_2+T_1sin \theta_1 - T_3 = 0[/tex]
[tex]T_3 = T_2sin \theta_2+T_1sin \theta_1[/tex] ---- (3)
From equation (2):
[tex]T_2 = \dfrac{T_1cos \theta_1}{cos \theta_2}[/tex]
Replacing the above value for T₂ into equation 3; we have
[tex]T_3 = \dfrac{T_1cos \theta_1}{cos \theta_2}sin \theta_2+T_1sin \theta_1[/tex]
[tex]T_3 cos \theta_2 = {T_1cos \theta_1}{}sin \theta_2+T_1sin \theta_1 cos \theta_2[/tex]
[tex]T_3 cos \theta_2 = T_1(cos \theta_1 sin \theta_2+sin \theta_1 cos \theta_2)[/tex] ---- (4)
Using trigonometric identity Sin (A+B) = SIn A cos B + Cos A sin B
So ; equation 4 can now be:
[tex]T_3 cos \theta_2 = T_1sin(\theta _1 + \theta_2)[/tex] --- (5)
replacing equation (1) into equation (5) ; we have:
[tex]F_g}cos \theta_2 =T_1 sin (\theta_1+\theta_2)[/tex]
Hence; the tension in the string is:
[tex]T_1= \dfrac{F_gcos \theta_2}{sin (\theta_1+\theta_2)}[/tex]
