Find the general solution of the simple homogeneous "system" below, which consists of a single linear equation. Give your answer as a linear combination of vectors. Let x2 and x3 be free variables. 3x1 - 6x2 9x3

Answer :

Chrisnando

Answer:

[tex]= \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right][/tex]

Step-by-step explanation:

Given:  3x1 - 6x2 + 9x3 = 0

x2 and x3 are free variables

We have:

3x1 = 6x2 - 9x3

divide all sides by 3, we have:

x1 = 2x2 - 3x3

Finding the general solution, we have:

[tex] \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{ccc}2x_2 - 3x_3\\x_2\\x_3\end{array}\right] [/tex]

[tex] = \left[\begin{array}{ccc}2x_2\\x_2\\0\end{array}\right] + \left[\begin{array}{ccc}-3x_3\\0\\x_3\end{array}\right][/tex]

[tex]= x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right][/tex]

The general solution is

[tex]= \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] = x_2 \left[\begin{array}{ccc}2\\1\\0\end{array}\right] + x_3 \left[\begin{array}{ccc}-3\\0\\1\end{array}\right][/tex]

Other Questions