Answer :
Answer:
[tex]\displaystyle \int {xsinx} \, dx = -xcosx + sinx + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {xsinx} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = dx[/tex]
- [dv] Trigonometric Integration: [tex]\displaystyle v = -cosx[/tex]
- Set dv: [tex]\displaystyle dv = sinx \ dx[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by Parts: [tex]\displaystyle \int {xsinx} \, dx = -xcosx - \int {-cosx} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {xsinx} \, dx = -xcosx + \int {cosx} \, dx[/tex]
- [Integral] Trigonometric Integration: [tex]\displaystyle \int {xsinx} \, dx = -xcosx + sinx + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e